
Stellar structure modeling using a parallel genetic algorithm
for objective global optimization

Travis S. Metcalfe a,b,*, Paul Charbonneau c

a Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
b Theoretical Astrophysics Center, Institute of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark

c High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA

Received 21 March 2002; received in revised form 9 August 2002; accepted 6 November 2002

Abstract

Genetic algorithms are a class of heuristic search techniques that apply basic evolutionary operators in a compu-

tational setting. We have designed a fully parallel and distributed hardware/software implementation of the generalized

optimization subroutine PIKAIA, which utilizes a genetic algorithm to provide an objective determination of the

globally optimal parameters for a given model against an observational data set. We have used this modeling tool in the

context of white dwarf asteroseismology, i.e., the art and science of extracting physical and structural information

about these stars from observations of their oscillation frequencies. The efficient, parallel exploration of parameter-

space made possible by genetic-algorithm-based numerical optimization led us to a number of interesting physical

results: (1) resolution of a hitherto puzzling discrepancy between stellar evolution models and prior asteroseismic in-

ferences of the surface helium layer mass for a DBV white dwarf; (2) precise determination of the central oxygen mass

fraction in a white dwarf star; and (3) a preliminary estimate of the astrophysically important but experimentally

uncertain rate for the 12Cða; cÞ16O nuclear reaction. These successes suggest that a broad class of computationally

intensive modeling applications could also benefit from this approach.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Astrophysical context

About five billion years from now, the hydrogen fuel in the center of the Sun will begin to run out and

the helium that has collected there will begin to gravitationally contract, increasing the rate of hydrogen

burning in a shell surrounding the core. Our star will slowly bloat into a red giant – eventually engulfing the

inner planets, perhaps even the Earth. As the helium core continues to contract under the influence of
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gravity, it will eventually reach the temperatures and densities needed to fuse three helium nuclei into a

carbon nucleus (the 3a reaction). Another nuclear reaction will compete for the available helium nuclei at

the same temperature: the carbon can fuse with an additional helium nucleus to form oxygen. The amount

of oxygen produced during this process is largely determined by the relative rates of these two competing

reactions [1]. Since the Sun is not very massive by stellar standards, it will never get hot enough in the center

to produce nuclei much heavier than carbon and oxygen. These elements will collect in the center of the

star, which will then shed most of its red giant envelope – creating a planetary nebula – and emerge as a hot

white dwarf star [2].
Once a white dwarf star forms and the nuclear reactions have ceased, its structural and thermal evolution

is dominated by cooling, and regulated by the opacity of its thin atmospheric outer layers. It will slowly

fade as it radiates its residual thermal energy into space – eventually cooling through a narrow range of

temperatures that will cause it to vibrate in a periodic manner, sending gravity-driven seismic waves deep

through the interior and bringing information to the surface in the form of brightness variations. This is

fortunate, because a detailed record of the nuclear history of the star is locked inside, and pulsations

provide the only known key to revealing it.

We can determine the internal composition and structure of pulsating white dwarfs using the techniques
of high speed photometry to observe their variations in brightness over time, and then matching these

observations with a computer model which behaves the same way. The observational aspects of this

procedure have been addressed by the development of the Whole Earth Telescope (WET) network [3], a

group of astronomers at telescopes around the globe who cooperate to produce nearly continuous time-

series photometry of a single target for 1–2 weeks at a time. The Fourier spectra of such observations reveal

dozens of excited modes with periods in the range 100–1000 s, supporting our interpretation of them as

non-radial oscillations with gravity as the restoring force (g-modes). The WET has now provided a wealth

of seismological data on the different varieties of pulsating white dwarf stars.
The physical property of white dwarf models that most directly determines the pulsation frequencies is

the radial profile of the Brunt–V€aais€aal€aa (buoyancy) frequency, which is given by

N 2 ¼ �g
dlnq
dr

�
� 1

C1

dlnP
dr

�
; ð1Þ

where g is the local gravity, qðrÞ the density, P ðrÞ the pressure, and C1 is ðolnP=olnqÞ at constant entropy.
The magnitude of N 2 reflects the difference between the actual and the adiabatic density gradients, and sets

the local propagation speed of internal gravity waves. The observed frequencies, in turn, are a measure of

the average (inverse) wave speed in the portion of the interior where the waves propagate. Inferring the N 2

internal profile from the observed pulsation frequencies is thus a classical inverse problem, on par in scope

and complexity with similar problems encountered in helio- and geo-seismology.

Consider first the complementary forward problem, which consists in computing the oscillation fre-

quencies of a given white dwarf structural model. The forward modeling procedure begins with a static,
non-rotating, unmagnetized, spherically symmetric model of a pre-white dwarf, which we allow to evolve

quasi-statically until it reaches the desired surface temperature. The models must initially satisfy two of the

basic equations of stellar structure: the condition of hydrostatic equilibrium, which balances the outward

pressure gradient against the inward pull of gravity

dP
dr

¼ GMr

r2
q; ð2Þ

and the continuity equation ensuring mass conservation

dMr

dr
¼ 4pr2q; ð3Þ
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where Mr is the mass contained within a spherical shell of radius r. White dwarf stars are compact objects

supported mainly by electron degeneracy pressure (Pe), and we can describe the core with a simple poly-

tropic equation of state of the form

Pe /
q
le

� �5=3

; ð4Þ

where le is the mean molecular weight per free electron. Cooling is achieved by leaking the internal thermal

energy through the opacity of the thin atmospheric layers at a rate consistent with the star�s luminosity, and

adjusting the interior structure accordingly. Although we initially ignore a third equation of stellar structure
(which ensures thermal balance), we do use it to evolve the models in a self-consistent manner. The cooling

tracks of our polytropic models quickly forget the unphysical initial conditions and converge with the

evolutionary tracks of self-consistent pre-white dwarf models well above the temperatures at which the

hydrogen- and helium-atmosphere white dwarfs are observed to be pulsationally unstable [4].

Next, the g-mode pulsation frequencies (rg) of the evolved models must be calculated for comparison

with the observations. Working in the usual spherical polar coordinates ðr; h;/Þ, the first step is to express

the radial displacement (Nr) experienced by an oscillating fluid element as

Nrðr; h;/; tÞ ¼ nrðrÞY m
l ðh;/Þ expðirgtÞ; ð5Þ

where the Y m
l are the usual spherical harmonic functions [5]. For a given set of angular and azimuthal

quantum numbers ðl;mÞ, the linearized adiabatic non-radial oscillation equations reduce to a one-dimen-

sional linear eigenvalue problem for rg and nr, described by the following set of equations:

1

r2
d

dr
ðr2nrÞ �

g
c2s

nr þ 1

 
� L2

l

r2
g

!
P 0

qc2s
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2
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1

q
dP 0
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�
þ N 2
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�
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where U0 is the perturbation of the gravitational potential, cs is the sound speed, L2
l � lðlþ 1Þc2s=r2 is the

Lamb or acoustic frequency, and nr is the (small) radial displacement associated with a given mode of

frequency rg (see [6] for a detailed derivation). The eigenmodes associated with a given set of ðl;mÞ values
possess radial harmonics which can be labeled with a third quantum number (k) related to the number of

nodes in the corresponding radial eigenfunction, so that the frequencies of individual eigenmodes are best

labeled as rklm.

Inverting a continuous function, in our case N 2ðrÞ, from a discrete set of data (the pulsation periods) is
well known to be a mathematically ill-posed problem [7,8]. However, the situation is not as critical as one

might imagine because strong physical constraints can be placed on the variations with depth of the Brunt–

V€aais€aal€aa frequency. In white dwarf interiors, the N 2ðrÞ profile is determined by the structural stratification

(e.g., variations of density and pressure with depth), which in turn depends on the star�s evolutionary

history as well as a number of physical parameters such as stellar mass, core chemical composition, surface

temperature, and the mass of its surface helium layer, to name but a few. The ill-posed inverse problem

for N 2 can be then recast in the form of an optimization problem that consists in finding the numerical

values for the set of these parameters that yields the optimal fit between the oscillation periods of the
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corresponding white dwarf structural model, as computed via the forward procedure outlined above, and

the observed periods. From the point of view of numerical optimization, this is now a well-posed problem.

With detailed observations and a theoretical model in hand, the next step is to select a suitable numerical

optimization method. Models of all but the simplest physical systems are typically non-linear, so finding the

optimal match to the observations requires an initial guess for each parameter. Some iterative method is

generally used to improve on this first guess until successive iterations do not produce significantly different

answers. There are at least two potential problems with this standard approach to model-fitting. The first

guess is often derived from the past experience of the person who is fitting the model. This subjective

method is even worse when combined with a local approach to iterative improvement. Many optimization

schemes, such as differential corrections [9] or the simplex method [10], yield final results that depend to

some extent on the choice of initial model parameters. This does not have serious consequences if the

parameter-space contains a single, well-defined minimum. But if there are many local minima, then it can be

more difficult for a traditional approach to find the globally optimal solution (e.g., see [11, Fig. 1]).

The multi-model nature of the optimization problem is not the only modeling pitfall to be reckoned with.

A good fit between model periods and data certainly suggests that the model adequately reflects the actual

physical structure of the stars themselves. However, the possibility can never be ruled out that other
physical characteristics of the white dwarf models, considered known and held fixed in the present modeling

work, could also be varied to yield comparably good fits to the observed frequencies. As with any inverse

problem, asteroseismic inferences are plagued by the potential for non-uniqueness of the solutions. With

this caveat firmly in mind, we proceed.

2. Genetic algorithms

An optimization scheme based on a genetic algorithm (GA) can avoid the problems inherent in many

traditional approaches. The range of possible values for each parameter is restricted only by observations

and by the constitutive physics of the model. Although the parameter-space defined in this way is often

quite large, a GA provides a relatively efficient means of searching globally for the optimal model. Al-

though it is more difficult for GAs to find precise values for the optimal set of parameters efficiently, they

are well suited to search for the region of parameter-space that contains the global minimum. In this sense,

the GA is an objective means of obtaining a good first guess for a more traditional local hill-climbing

method, which can narrow in on the precise values and uncertainties of the optimal solution.
Genetic algorithms [12–15], arguably still the most popular class of evolutionary algorithms [16,17], were

inspired by Charles Darwin�s notion of biological evolution through natural selection [18]. The basic idea is

to solve an optimization problem by evolving the global solution, starting with an initial set of purely

random guesses. The evolution takes place within the framework of the model, with the individual pa-

rameters serving as the genetic building blocks. Selection pressure is imposed by some goodness-of-fit

measure between model and observations. Several books have been written to describe how these ideas can

be applied in a computational setting [12,13], but we provide a basic overview below.

To begin, the GA samples the parameter-space at a fixed number of points defined by a uniform se-
lection of randomly chosen values for each parameter. The GA evaluates the model for each set of pa-

rameters, and the predictions are compared to observations. Each point in the ‘‘population’’ of trials is

subsequently assigned a fitness based on the relative quality of the match. A new generation of sample

points is then created by selecting from the current population of points according to their computed fit-

ness, and then modifying their defining parameter values with two genetic operators in order to explore new

regions of parameter-space.

Rather than modifying the parameter values directly, the genetic operators are applied to encoded

representations of the parameter sets. The simplest way to encode them is to convert the numerical values of
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the parameters into a string of digits. The string is analogous to a chromosome, and each digit is like a gene.

For example, a point defined by two parameters with numerical values a1 ¼ 0:123 and b1 ¼ 0:456 could be

encoded into the string 123456.

The two basic genetic operators are crossover, which emulates sexual reproduction, and mutation which

emulates somatic defects. The crossover procedure pairs up the strings, chooses a random position for each

pair, and swaps the two strings from that position to the end. For example, suppose that the encoded string

above is paired with another point having a2 ¼ 0:567 and b2 ¼ 0:890, which encodes to the string 567890.

If the second position between numbers on the string is chosen, the strings become:

12 3456 ! 12 7890 ð9Þ

56 7890 ! 56 3456 ð10Þ

To help keep favorable combinations of parameters from being eliminated or corrupted too hastily, this

operation is not applied to all of the pairs. Instead, it is assigned a fixed occurrence probability (pc) per
selected pair.

The mutation operator spontaneously replaces a digit in the string with a new randomly chosen value. In

our above example, if the mutation operator is applied to the fourth digit of the second string, the result
might be

563 4 56 ! 563 2 56 ð11Þ

Such digit replacement occurs with a small probability (pm), often dubbed the mutation rate.

After both operators have been applied, the strings are decoded back into sets of numerical values for the
parameters. In this example, the new first string 127890 becomes a01 ¼ 0:127 and b01 ¼ 0:890, and the new

second string 563256 becomes a02 ¼ 0:563 and b02 ¼ 0:256. Note that mutation in this case has caused a

significant ‘‘jump’’ in parameter-space, from the value b02 ¼ 0:456 that would have been generated by the

crossover operation only. The new genetically shuffled set of points replaces the original set, and the process

is repeated until some termination criterion is met.

What is the justification for this rather contorted way to produce two new trial points from two existing

ones? One could have instead simply formed the arithmetic averages of the pairs a1; a2, and b1; b2. However,

under the ‘‘pressure’’ of fitness-based selection, crossover acting on successive generations of strings
modifies the frequency of a given substring in the population at a rate proportional to the difference be-

tween the mean fitness of the subset of strings incorporating that substring, and the mean fitness of all

strings making up the current population. This mouthful is given quantitative expression in the so-called

schema theorem [12,14,15], which continues to form the basis of most theoretical analysis of GAs. The GA

can be thought of as a classifier system that continuously sorts out and combines the most advantageous

substrings that happen to be present across the whole population at a given time.1 In this context the role of

mutation is to inject ‘‘novelty’’ continuously, by producing new digit values at specific string positions,

which might not otherwise have been present in the population or may have been selected against during
earlier evolutionary phases.

It should be clear already from this brief introductory discussion that the operation of a GA involves a

number of random processes, so that the resulting search algorithm is stochastic in nature. Consequently,

there is always a finite probability that the GA will not find the globally optimal solution in a given run.

This probability decreases gradually, of course, as the evolution is pushed through more and more gen-

erations. Alternately, one can run the GA for fewer generations, but do so several times with different

1 In the GA literature this property is known as ‘‘intrinsic parallelism’’ [14], which has nothing to do with the practical issue of

implementing a GA application on a parallel hardware architecture.
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random initialization. This form of higher-level Monte Carlo simulations makes it possible to establish the

validity of the optimal set of model parameters with an acceptable degree of confidence.

3. The PIKAIA subroutine

PIKAIA is a self-contained, genetic-algorithm-based optimization subroutine developed at the High

Altitude Observatory, and available in the public domain (http://www.hao.ucar.edu/public/research/si/pi-
kaia/pikaia.html). PIKAIA maximizes a user-specified FORTRAN function through a call in the body of

the main program. Unlike many GA packages available commercially or in the public domain, PIKAIA

uses decimal (rather than binary) encoding. This choice was motivated by portability issues – binary op-

erations are usually carried out through platform-dependent functions in FORTRAN, which makes it more

difficult to port the code between PC and workstation platforms. While originally designed primarily as a

learning tool, PIKAIA�s portability, ease of use, and robustness have made it by all appearances the

software of choice for a wide variety of modeling problems requiring global optimization capabilities (see

[19–22] for sample applications; and the PIKAIA web page for a compilation of past and present users and
their research applications).

Fig. 1. Minimal pseudo-code for the PIKAIA genetic algorithm optimization subroutine, operating in Full-Generational-Replacement

mode. The number of model parameters being optimized is n, NP is the (fixed) population size, and NG is the number of (time-like)

generations over which the evolution is carried out. The functions ENCODE and DECODE convert a n-dimensional floating-point array

to a string, and vice versa. The function SELECT picks a single individual (flagged by an integer, here k1 or k2), with a probability

proportional to its fitness-based rank in the current population. Note that the strings g1, g2 are modified upon exit from CROSS and

MUTATE, and since each breeding event produces two offspring, the first inner loop only needs to repeat NP=2 times to produce a new,

full-size population. Operations and function calls labeled ‘‘M’’ are carried out serially by the Master program, and those labeled ‘‘S’’

are executed in parallel by the Slave processes (see Section 4 for more details).
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3.1. GA structure: select–breed–evaluate–replace

Fig. 1 shows, in pseudo-code form, the algorithmic structure of PIKAIA. The inner workings of the

various functions and subroutines appearing therein have been described at length elsewhere [11,23], and so

are only outlined in what follows. We do describe in some detail in Sections 3.2 and 3.3 below additional

strategies and operators not originally included in the public-release version PIKAIA 1.0.

The task at hand is the maximization of the user-supplied function FF, which accepts as input an n-
dimensional floating-point array x(1 : n) containing a set of parameter values defining one instance of the

model being optimized, and returning a measure of goodness-of-fit (based, e.g., on a v2 measure if the

model output is being compared to data). The code evolves a population of NP trial points in the n-di-
mensional search space, stored in the array P_old(1 : NP; 1 : n), through a preset number of generations

NG. The population is (usually) initialized with random deviates uniformly distributed in user-specified

intervals defining the range of parameter-space to be explored, so that the evolutionary search remains

bounded but otherwise entirely unbiased by the choice of initial conditions.

At each time-like generation (outer loop), pairs of ‘‘parents’’ are extracted from the current population,

with selection probability increasing with the individual�s fitness, using a rank-based version of the classical

Roulette Wheel Algorithm [13]. The two corresponding n-dimensional floating-point arrays are then

encoded into two strings (g1; g2), bred using crossover and mutation operators, and decoded back into two
n-dimensional floating-point arrays that define the two ‘‘offspring’’ points. These are stored in the tem-

porary array P_new, which concludes the breeding step. The fitness of the new population members is then

computed via the user-supplied fitness function FF, and stored in the NP-dimensional array fit. Finally, a

reproduction plan is needed to insert some or all of the newly generated and evaluated trial points into the

breeding population. The simplest strategy, dubbed ‘‘Full-Generational-Replacement’’, consists in breed-

ing a number of new trial points equal to that within the original population (first inner loop, repeating

only NP=2 times since each breeding event produces two offspring), and then replacing the old population

with the new (third inner loop). This concludes one generational iteration, and the above steps are repeated
anew.

3.2. Dynamical adjustment of the mutation rate

Of the various internal parameters governing the operation of the genetic algorithm itself, the mutation

rate is one that often sensitively affects performance [12,17]. This rate is more aptly defined as the prob-

ability (06 pm 6 1) that a single digit in the encoded strings will be subjected to replacement by another

random digit, as already described briefly in Section 2. As with biological systems, mutation is very much a

mixed blessing. It represents the only way to inject variability into the evolving population [14], which is

extremely useful – some would say essential – for efficient exploration of parameter-space and displacement

of the population away from secondary extrema. But too much mutation can also destroy the existing good

solutions. Some sort of optimal tradeoff between these incompatible tendencies must be achieved by a
proper choice of pm.

Various ‘‘recipes’’ for setting pm have been put forth, starting with simple prescriptions such as setting

pm ¼ ðNPLÞ�1
, where L is the string length [24], detailed empirical modeling [25], all the way to meta-sim-

ulations where a higher-level GA evolves the combination of controlling parameters that yields the best

performance of the underlying GA for the problem under consideration [26]. However, near-optimal per-

formance is rarely sustained across wide ranges of problems. Moreover, because of the very large number of

model evaluations involved, some of the more elaborate approaches rapidly become impractical if the

modeling problem at hand is very computation intensive, as is the case with the problem considered here.
One way around this quandary is to allow pm to vary dynamically in the course of an evolutionary run,

according to the degree of clustering of the current population as a whole. The public-release version of

182 T.S. Metcalfe, P. Charbonneau / Journal of Computational Physics 185 (2003) 176–193



PIKAIA does so by monitoring the normalized difference (D) between the fitness values of the best and

median individuals in the population (ranking being based on fitness):

D ¼ maxðfitÞ �medðfitÞ
maxðfitÞ þmedðfitÞ ½fitness based�: ð12Þ

A strongly clustered (scattered) population has D ! 0 (D ! 1). At the end of each generational iteration, D
is computed, and if found to fall below (exceed) a preset lower (upper) bound D1 (D2), the mutation rate is

multiplicatively incremented (decremented) by a factor d:

pm ! pm � d; D6D1;
pm=d; D P D2:

�
ð13Þ

Experience reveals that the GA�s performance is not sensitively dependent on the adopted values for

D1; D2, and d, within reasonable bounds. Numerical values D1 ¼ 0:05, D2 ¼ 0:25, d ¼ 1:5 have proved to be

robust over a variety of test problems, and are hardwired in PIKAIA�s mutation rate adjustment subroutine

(ADJMUT in Fig. 1).
Clearly, Eq. (12) is not the only possible measure of population clustering. Another possibility is to use a

measure of metric distance between the best and median individual in the population:

D2 ¼ 1

n

Xn
k¼1

ðxmax
k � xmed

k Þ2 ½distance based�; ð14Þ

where xmax
k (xmed

k ) represents the kth element of the n-dimensional floating-point array containing the pa-

rameter values defining the current best (median) individual in the population. Which of Eqs. (12) and (14)

will yield the best optimization performance cannot be foretold, as the answer will depend on the shape of

the fitness isosurface in parameter-space (and if these are known a priori in detail, then the optimization

problem is already solved!). On synthetic white dwarf data, distance-based adjustment was found to in-
crease the success rate (i.e., probability of locating the true global optimum) of the search process by 
50%

over fitness-based adjustment, all other GA control parameters being the same (see Fig. 2).

Dynamical adjustment of pm can lead to relatively large mutation rates in some evolutionary phases,

with the potential danger of destroying good solutions. PIKAIA avoids this by making use of a small but

very useful ‘‘cheat’’ known as elitism [24], which saves the fittest member of the breeding population

(P_old) and recopies it to the new population (P_new) as the final step of the reproduction plan.

PIKAIA�s dynamical adjustment of the mutation rate represents a particularly simple form of self-ad-

aptation (see [27], and articles therein). PIKAIA can function anywhere along a spectrum extending between
two very qualitatively distinct search modes; as long as pm � 1, PIKAIA operates as a classical genetic

algorithm, with the crossover operator primarily responsible for the exploration of parameter-space. On the

other hand, as pm ! D2 PIKAIA behaves more and more like a stochastic iterated hill-climber. This pe-

culiar algorithmic combination has proven to be both robust and efficient.

3.3. Creep mutation

The one-point mutation operator included in the public-release version of PIKAIA suffers from a well-

known shortcoming, which may prove troublesome under certain problem-dependent circumstances.

Consider the following portion of a string encoding a parameter value a ¼ 0:1961:

. . .1961 . . . ð15Þ

Assume now that the optimal solution has a� ¼ 0:2050, and that the search space is smooth enough that,
at least early in the evolution, an individual with a ¼ 0:1961 has above-average fitness. The occurrence
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frequency of the above substring in the population will increase, and sequential action of one-point mu-

tation is likely to lead to a gradual trend toward the substring

. . .1999 . . . ð16Þ

But now we have a problem. Going from this substring to the optimal 2050 requires some simultaneous

and well-coordinated digit substitutions on the part of one-point mutation, which, statistically, are highly
unlikely. The string has become stuck at a so-called ‘‘Hamming wall’’.

Encoding schemes can be designed such that successive single digit changes in the string translate into

smooth variations of the decoded parameter values. Binary Gray coding [16,28] is a well-known example.

An alternate, often more practical solution is to make use of a new mutation operator known as creep

mutation [13]. In the context of decimal encoding, this would operate as follows. Rather than randomly

replacing a digit targeted for mutation, add or subtract 1 (with equal probabilities) to the existing digit, and

‘‘carry over the one’’ when appropriate. For example,

. . .19 9 9 . . . ! . . .1 90 9 . . . ! . . . 100 9 . . . ! . . .2009 . . . ð17Þ

Clearly creep mutation can cross Hamming walls, but it lacks the ability to generate occasional large

‘‘jumps’’ in parameter-space the way one-point mutation can if it operates on a string element that decodes

Fig. 2. Sample convergence curves for GA runs using different methods for dynamical adjustment of the mutation rate. The top panel

shows the variance of the best trial in the population as a function of generation using distance-based adjustment with (solid) and

without (dashed) creep mutation included, and using fitness-based adjustment with creep mutation (dotted). The bottom panel shows

the corresponding mutation rate as a function of generation for the three methods. Crossover is primarily responsible for the initial

rapid improvement in all three curves. Both distance-based curves converge to the global solution, though more slowly when creep

mutation is included. The fitness-based method is much less successful escaping local minima, but eventually converges to the region of

the global solution.
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into a leading digit in the corresponding floating-point parameter. Since this latter property is advantageous

for exploration of parameter-space, whenever carrying out mutation (call MUTATE in Fig. 1), it is

preferable to pick either one-point or creep mutation with equal probabilities.

The use of creep mutation for our white dwarf modeling problem gave mixed results; it led to a higher

probability of finding the exact set of optimal parameters, but at the expense of slightly slower convergence

to the region of the global solution (see Fig. 2). This probably reflects the fact that there were no Hamming

walls in the vicinity of the optimal solution. In other PIKAIA applications, however, creep mutation has

been found to lead to significant improvements. As with so many other aspects of GA-based numerical
optimization, the benefit of creep mutation is highly problem-dependent.

4. Parallel implementation

In 1998 we began a project to adapt some well-established white dwarf evolution and pulsation codes to

interface with PIKAIA. On the fastest processors available at the time, a single model would run in about

45 wallclock seconds. Knowing that the optimization would require 
105–6 models, it was clear that a serial
version of PIKAIA would require many months to finish on a single processor. So we decided to incor-

porate the message passing routines of the Parallel Virtual Machine (PVM) software [29] into PIKAIA.

4.1. General parallelization considerations

The PVM software allows a collection of networked computers to cooperate on a problem as if they were

a single multi-processor parallel machine. All of the software and documentation is free. We had no trouble

installing it on our Linux cluster [30] and the sample programs that come with the distribution made it easy

to learn and use. The trickiest part of the procedure was deciding how to split up the workload among the

various computers.

The GA-based fitting procedure for the white dwarf code quite naturally divided into two basic func-

tions: evolving and pulsating white dwarf models, and applying the genetic operators to each generation
once the fitnesses had been calculated. When we profiled the distribution of execution time for each part of

the code, this division became even more obvious. Here, as with the vast majority of real-life applications,

fitness evaluation (second inner loop in Fig. 1) is by far the most computationally demanding step. For our

model-fitting application, 93% of CPU time is spent carrying out fitness evaluation, 4% carrying out

breeding and GA internal operations (such as mutation rate adjustment), and 3% for system and I/O. It

thus seemed reasonable to create a slave program to perform the model calculations, while a master pro-

gram took care of the GA-related tasks.

In addition to decomposing the function of the code, a further division based on the data was also
possible. Fitness evaluation across the population is inherently a parallel process, since each model can be

evaluated independently of the others. Moreover, it requires minimal transfer of information, since all that

the user-supplied function FF requires is the n-dimensional floating-point array of parameters defining one

single instance of the model, and all it needs to return is the floating-point value corresponding to the

model�s fitness. It is then natural to send one model to each available processor, so the number of machines

available would control the number of models that could be calculated in parallel. Maximal use of each

processor is then assured by choosing a population size NP that is an integer multiple of the number of

available processors.
In practice, this recipe for dividing the workload between the available processors proved to be very

scalable. Since very little data is exchanged between the master and slave tasks, our 64-node cluster pro-

vided a speedup factor of about 53 over the performance on a single processor (see Fig. 3).
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4.2. Master program

Starting with the slightly improved unreleased version of PIKAIA, including creep mutation and distance-

based mutation rate adjustment, we used the message passing routines from PVM to create a parallel fitness
evaluation subroutine. The original code evaluated the fitnesses of the population one at a time in a DO loop

(equivalent to the second inner loop in Fig. 1). We replaced this procedure with a single call to a new sub-

routine that evaluates the fitnesses in parallel on all available processors. The parallel version of PIKAIA

constitutes the master program, which runs on the central computer of our Linux cluster. A flow chart for the

parallel fitness evaluation subroutine (PVM_FITNESS.F) is shown in Fig. 4.

After starting the slave program on every available processor, PVM_FITNESS.F sends an array

containing scaled values of the parameters to each slave job over the network. In the first generation of

the GA, these values are completely random; in subsequent generations, they are the result of the
selection, crossover, and mutation of the previous generation, performed by the non-parallel portions of

PIKAIA.

Next, the subroutine listens for responses from the network and sends a new set of parameters to each

slave job as it finishes the previous calculation. When all sets of parameters have been sent out, the sub-

routine begins looking for jobs that may have crashed and re-submits them to slaves that have finished and

would otherwise sit idle. If a few jobs do not return a fitness after an elapsed time much longer than the

average runtime required to compute a model, the subroutine assigns them a fitness of zero. In a typical

run, this was necessary for less than 1 in 10,000 model evaluations. When every set of parameters in the
generation have been assigned a fitness value, the subroutine returns to the main program to perform the

genetic operations – resulting in a new generation of models to calculate. The process continues for a fixed

number of generations, chosen to maximize the success rate of the search.

In all simulation runs reported below, we kept the crossover probability fixed at pc ¼ 0:85, used an initial

mutation probability pm ¼ 0:005, and retained a level of selection pressure corresponding to PIKAIA�s
default settings. We determined the optimal number of generations by applying the method to synthetic

data and looking at the fraction of runs that converged to the input model as a function of run length, up to

500 generations. To minimize the probability of missing the global solution for observed data, we fixed the
number of generations to be slightly larger than the test run that converged the slowest. Within the range of

control parameters we explored, our GA application exhibited a clear tradeoff effect between population

size NP and number of generational iterations NG. As long as the product NPNG remained near 3� 104, the

success probability of a single GA run was approximately constant at 
70%.

Fig. 3. The scalability of the parallel version of PIKAIA on a 64-node Linux cluster using the white dwarf fitness function. The cluster

contains two types of CPUs (PIII and K6-2) running at slightly different speeds (300 and 366 MHz), but the points in this plot were

produced using equal numbers of each, scaled relative to the average performance of the two types.
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4.3. Slave program

The original white dwarf code came in three pieces: (1) the evolution code, which starts with a static

polytropic approximation of a pre-white dwarf and allows it to cool quasi-statically until it reaches the
desired temperature, (2) the prep code, which reformats the output of the evolution code, and (3) the

pulsation code, which uses the output of the prep code to solve the adiabatic non-radial oscillation

equations, yielding the mode periods to be compared with the observed periods.

Fig. 4. Flow chart for the parallel fitness evaluation subroutine, which runs on the master computer.
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To get the white dwarf code running in an automated way, we merged the three components of the

original code into a single program, and added a front end that communicated with the master program

through PVM routines. This code (FF_SLAVE.F) combined with the fitness function constitutes the slave

program, and is run on each node of the Linux cluster. A flow chart for FF_SLAVE.F is shown in Fig. 5.

The operation of the slave program is relatively simple. Once it is started by the master program, it

receives a set of parameters from the network. It then calls the fitness function (the white dwarf code in our

case) with these parameters as arguments. Our fitness function rescales the dimensionless parameters into

physical units, and cools a polytropic white dwarf model with the proper mass and structure down to the
specified temperature. A typical model has several hundred spherical mass shells, and requires at most a few

dozen time steps to cool down to the relevant temperatures.

The slave program then calculates the adiabatic non-radial pulsation periods within a specified range,

given the spherical degree of the modes (only l6 2 have been observed in white dwarfs). This involves

solving Eqs. (6)–(8), which is carried out numerically using an iterative scheme based on the Runge–Kutta–

Fehlberg shooting method [31]. The first guess for the eigenvalue can be obtained from the following useful

approximation of the g-mode pulsation frequencies:

rklm � N 2lðlþ 1Þ
k2r2

� �1=2

þ 1

�
� Ck

lðlþ 1Þ

�
mX; ð18Þ

where the second term is due to the slow rotation frequency X (which breaks the spherical symmetry), and

the constant Ck is of order unity [32]. Typically, only a few iterations are needed to achieve convergence on

a radial mesh with several thousand effective zones, where the model quantities are interpolated by means

of a cubic spline between the equilibrium model shells, equally spaced in mass.
Finally, each of the observed periods (Pobs) are compared to the nearest model periods (Pmod), and the

variance (r) is calculated,

Fig. 5. Flow chart for the slave program of the parallel code, which runs on each node of the Linux cluster.
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r ¼ 1
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XN
j¼1

ðPobs

 
� PmodÞ2

!1=2

; ð19Þ

with N ¼ 11 for the data used here. The fitness is then defined as the inverse of this root-mean-square

period residual,2 and is sent to the master program over the network. The node is then ready to run the

slave program again and receive a new set of parameters from the master program.

5. Results

The ultimate goal of our project was to derive a measurement of the astrophysically important
12Cða; cÞ16O nuclear reaction rate. When a white dwarf star is being formed in the core of a red giant during

helium burning, the 3a and 12Cða; cÞ16O reactions compete for the available helium nuclei. The relative

rates of the two reactions determines the final yield of oxygen deep in the core. The 3a rate is well es-

tablished, but the same is not true of the 12Cða; cÞ16O reaction. The extrapolation of its rate to stellar

energies from high-energy laboratory measurements is complicated by interference between various con-
tributions to the total cross-section, leading to a relatively large uncertainty [33]. This translates into

similarly large uncertainties in our understanding of every astrophysical process that depends on this re-

action, from supernovae explosions to galactic chemical evolution. A seismological measurement of the

core oxygen mass fraction XO in a pulsating white dwarf star can provide an independent way to determine

the 12Cða; cÞ16O reaction at stellar energies.

Knowledge of the central oxygen mass fraction has other important astrophysical implications. Surveys

of white dwarfs in our galactic neighborhood have demonstrated a marked deficit at luminosities below

about 10�6 times the solar luminosity (L�) [34]. The favored interpretation is that even the oldest white
dwarfs in the galaxy have not yet had time to cool below the observed cutoff luminosity [35]. This opened

the possibility to infer the age of the galactic disk, and thus obtain a lower limit on the age of the Universe.

White Dwarf Cosmochronometry, as the subject has been called, evidently requires detailed knowledge of

the white dwarf thermal energy content and cooling history [36]. The former turns out to depend signifi-

cantly on the core chemical composition, primarily the mass ratio of carbon-to-oxygen (XC=XO), these being

the two constituents that theoretically account for the near totality of the core mass.

Our first application of the parallel GA allowed only three parameters to be varied in the models: the

surface temperature, the stellar mass, and the thickness of a surface helium layer. To the extent possible, we
defined the boundaries of the search using only observational constraints and limits imposed by the un-

derlying physics. It was the broadest survey of white dwarf pulsation models ever conducted, covering more

than 100 times the search volume of previous studies. After demonstrating that the method was successful

on synthetic data, we applied it to the best-observed star among the helium-atmosphere pulsators, GD 358,

using data obtained by the Whole Earth Telescope [3]. The original analysis of these data [37] identified a

series of 11 (l ¼ 1;m ¼ 0) pulsation modes of consecutive radial overtone (k ¼ 8–18) with periods between

400 and 900 s. The measured trigonometric parallax of GD 358 confirmed this l identification beyond

doubt, since the luminosity of models with higher l modes could not be reconciled with this independent
constraint. The initial asteroseismic study of GD 358 from these data concluded that the helium layer mass

was near 10�6m=M� [38], a result at odds with standard stellar evolution theory, which leads to an expected

value near 10�2m=M� [39].

2 The exact definition of fitness in terms of r is not critical here, since PIKAIA establishes selection probability in terms of fitness-

based ranks. In other words, defining fitness as 1=r2 instead of 1=r would lead to the same selection probabilities in a given population

of trial solutions.
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The global search performed by the parallel GA led to the discovery of two families of reasonably good

models for this object, with helium layer masses near 10�6 and 10�2m=M� [40]. Fig. 6 shows front and side

views of the complete 3-dimensional parameter-space covered by our search, along with the two good

families of models. The dotted lines show the range of parameters covered by the earlier search. When we

confined the GA to search within the dotted region, it found a solution consistent with that found by the

earlier investigation. But the family of models with thicker helium layers ultimately provided a better fit to

the observations (r ¼ 1:5 s [40]), resolving the tension with stellar evolution theory. This discovery would

not have been possible if we had confined our search using more subjective criteria.
Based on our initial success, we extended the method to include two additional parameters to describe

the internal composition and structure of the white dwarf: the central oxygen mass fraction XO, and a

parameter related to the width of the composition transition layer between the core and envelope of the

white dwarf. After some initial difficulty, we realized that two of our model parameters were correlated, so

we devised a system using the GA to iteratively optimize two sets of four parameters until both fits con-

verged to the same point. With tests on synthetic data, we demonstrated that the success probability was

70–80% for an individual run (with NG ¼ 400þ 250, NP ¼ 128). By selecting the best solution from 10

independent runs, the probability of missing the global solution became negligible (<10�6). The entire
optimization procedure required three iterations between the subsets of four parameters. Each iteration

consisted of 10 runs with a total of 650 generations of 128 points. In the end, the method required 2:5� 106

model evaluations, which was 200 times more efficient than enumerative search of the grid for each iteration

at the same sampling density, or about 4000 times more efficient than enumerative search of the entire five-

dimensional space.

The end result of our new fit included a measured value for the crucial central oxygen mass fraction in

GD 358: XO ¼ 84� 3% [41]. The age estimate of the galactic disk associated with white dwarf cooling to

10�6L� has been shown to vary by as much as 3.6Gyr as XO varies from zero (pure carbon core) to unity
(pure oxygen core) [36]. If our measurement of XO for GD358 is characteristic of most white dwarfs, this

would imply an age for the galactic disk near the low end of the cosmochronologically allowed range (8.5–

11Gyr; see [36, Section 3.2, Figs. 6 and 7]).

Fig. 6. Front and side views of the three-dimensional GA search space (stellar mass; surface temperature; surface helium layer mass)

for a C/O 50:50 core with a ‘‘steep’’ internal chemical profile. Square points mark the locations of every model found by the GA with

root-mean-square period residuals smaller than 3 s. The dotted line shows the range of parameters considered in [38]. The best solution

in family A has r ¼ 2:71, while the best in family B has r ¼ 2:42. Since the typical observational uncertainties in period determinations

are about 
0.05 s, the difference is statistically and physically significant. Note that the optimal solution for this core composition

belongs to family B, but when the internal composition and structure are also optimized this is no longer the case (see [40,41] for

details).
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Combined with detailed simulations of white dwarf internal chemical profiles, our determination of XO

also makes it possible to infer the 12Cða; cÞ16O reaction rate [41]. Using an evolutionary model that

produced the same final mass as GD 358, the value of the 12Cða; cÞ16O rate was adjusted until the central

oxygen mass fraction matched our asteroseismically inferred value (see Fig. 7). The implied reaction rate

was S300 ¼ 370� 40 keV [43]. Considering that the root-mean-square period residuals of our optimal

model are still 
1 s while the observational uncertainties are closer to 
0.05 s, there is clearly more work

to be done. But this new computational method will allow us to probe the fine details of white dwarf

interior structure that were formerly inaccessible, like the detailed variation with depth of the interior
composition.

Finally it is worth reiterating the non-uniqueness caveat mentioned in Section 1. While we are confident

that the solutions obtained here are optimal from the point of view of residual minimization, they are only

so within our modeling framework. We have reduced the possible variations of the internal stratification of

white dwarfs to five primary parameters. In doing so we are sampling a small subset of the space of all

possible and (physically consistent) internal stratifications. In order to draw firm conclusions from our

results, we need to further assume that the subset defining our search space is representative of the full space

of possible solutions. Encouraging evidence that this might well be the case has already been obtained, by
using the GA to evolve physically motivated, local perturbations to the Brunt–V€aais€aal€aa frequency profile

that lead to further statistically significant improvement in the period residuals [41]. Nonetheless, the

possibility still remains that even better and physically distinct families of solutions lie somewhere in di-

mensions of ‘‘model space’’ that we have not yet explored. This must be kept in mind when making a final

assessment of the physical conclusions described above.

Fig. 7. The internal oxygen profiles for a 0:65M� white dwarf model using the NACRE [42] nuclear reaction rates (solid line) between

the upper and lower limits on the 12Cða; cÞ16O rate (hashed region). Also shown are the profiles resulting from the rates that match the

central oxygen mass fraction derived for GD 358 (thick solid line) within the �1r limits (shaded region) [43].
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6. Discussion

The application of genetic-algorithm-based optimization to white dwarf pulsation models turned out to

be very fruitful. We are now confident that we can rely on this approach to perform global searches and to

provide objectively determined optimal models for the observed pulsation frequencies of white dwarfs,

along with fairly detailed maps of the parameter-space as a natural byproduct. The method finally allowed

us to measure the central oxygen mass fraction in a pulsating white dwarf star, with an internal precision of

a few percent [40]. We used this value to derive a preliminary measurement of the 12Cða; cÞ16O reaction rate
[41,43], which turned out higher than most published values [33]. More work on additional white dwarf

stars and possible sources of systematic uncertainty should help to resolve the discrepancy.

Our success with the parallel genetic algorithm leads us to believe that many other problems of interest in

astronomy and physics could benefit from this approach. For models that can run in less than a few

minutes on currently available processors, and where automated execution is possible, the parallel version

of PIKAIA can provide an objective and efficient alternative to large grid searches without sacrificing the

global nature of the solution. Although the number of model evaluations required is still large compared to

what can be accomplished in reasonable wallclock time on a single desktop computer, Linux clusters are
fast, inexpensive, and are quickly becoming ubiquitous. When combined with software like PIKAIA that

can exploit the full potential of such distributed architectures, a new realm of modeling possibilities opens

up.
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